Spark DateType/Timestamp cast 小结

前言

在平时的 Spark 处理中常常会有把一个如 2012-12-12 这样的 date 类型转换成一个 long 的 Unix time 然后进行计算的需求.下面是一段示例代码:

1
2
3
4
5
6
7
8
9
10
11
12
val schema = StructType(
Array(
StructField("id", IntegerType, nullable = true),
StructField("birth", DateType, nullable = true),
StructField("time", TimestampType, nullable = true)
))

val data = Seq(
Row(1, Date.valueOf("2012-12-12"), Timestamp.valueOf("2016-09-30 03:03:00")),
Row(2, Date.valueOf("2016-12-14"), Timestamp.valueOf("2016-12-14 03:03:00")))

val df = spark.createDataFrame(spark.sparkContext.parallelize(data),schema)

问题 & 解决

首先很直观的是直接把DateType cast 成 LongType, 如下:

df.select(df.col("birth").cast(LongType))

但是这样出来都是 null, 这是为什么? 答案就在 org.apache.spark.sql.catalyst.expressions.Cast 中, 先看 canCast 方法, 可以看到 DateType 其实是可以转成 NumericType 的, 然后再看下面castToLong的方法, 可以看到case DateType => buildCast[Int](_, d => null)居然直接是个 null, 看提交记录其实这边有过反复, 然后为了和 hive 统一, 所以返回最后还是返回 null 了.

虽然 DateType 不能直接 castToLong, 但是TimestampType可以, 所以这里的解决方案就是先把 DateType cast 成 TimestampType. 但是这里又会有一个非常坑爹的问题: 时区问题.

首先明确一个问题, 就是这个放到了 spark 中的 2012-12-12 到底 UTC 还是我们当前时区? 答案是如果没有经过特殊配置, 这个2012-12-12代表的是 当前时区的 2012-12-12 00:00:00., 对应 UTC 其实是: 2012-12-11 16:00:00, 少了8小时. 这里还顺便说明了Spark 入库 Date 数据的时候是带着时区的.

然后再看DateType cast toTimestampType 的代码, 可以看到buildCast[Int](_, d => DateTimeUtils.daysToMillis(d, timeZone) * 1000), 这里是带着时区的, 但是 Spark SQL 默认会用当前机器的时区. 但是大家一般底层数据比如这个2016-09-30, 都是代表的 UTC 时间, 在用 Spark 处理数据的时候, 这个时间还是 UTC 时间, 只有通过 JDBC 出去的时间才会变成带目标时区的结果. 经过摸索, 这里有两种解决方案:

  1. 配置 Spark 的默认时区config("spark.sql.session.timeZone", "UTC"), 最直观. 这样直接写 df.select(df.col("birth").cast(TimestampType).cast(LongType)) 就可以了.
  2. 不配置 conf, 正面刚: df.select(from_utc_timestamp(to_utc_timestamp(df.col("birth"), TimeZone.getTimeZone("UTC").getID), TimeZone.getDefault.getID).cast(LongType)), 可以看到各种 cast, 这是区别:
  • 没有配置 UTC: from_utc_timestamp(to_utc_timestamp(lit("2012-12-11 16:00:00"), TimeZone.getTimeZone("UTC").getID), TimeZone.getDefault.getID)
  • 配置了 UTC: from_utc_timestamp(to_utc_timestamp(lit("2012-12-12 00:00:00"), TimeZone.getTimeZone("UTC").getID), TimeZone.getDefault.getID) 多了8小时
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
/**
* Returns true iff we can cast `from` type to `to` type.
*/
def canCast(from: DataType, to: DataType): Boolean = (from, to) match {
case (fromType, toType) if fromType == toType => true

case (NullType, _) => true

case (_, StringType) => true

case (StringType, BinaryType) => true

case (StringType, BooleanType) => true
case (DateType, BooleanType) => true
case (TimestampType, BooleanType) => true
case (_: NumericType, BooleanType) => true

case (StringType, TimestampType) => true
case (BooleanType, TimestampType) => true
case (DateType, TimestampType) => true
case (_: NumericType, TimestampType) => true

case (StringType, DateType) => true
case (TimestampType, DateType) => true

case (StringType, CalendarIntervalType) => true

case (StringType, _: NumericType) => true
case (BooleanType, _: NumericType) => true
case (DateType, _: NumericType) => true
case (TimestampType, _: NumericType) => true
case (_: NumericType, _: NumericType) => true
...
}

1
2
3
4
5
6
7
8
9
10
11
12
13
private[this] def castToLong(from: DataType): Any => Any = from match {
case StringType =>
val result = new LongWrapper()
buildCast[UTF8String](_, s => if (s.toLong(result)) result.value else null)
case BooleanType =>
buildCast[Boolean](_, b => if (b) 1L else 0L)
case DateType =>
buildCast[Int](_, d => null)
case TimestampType =>
buildCast[Long](_, t => timestampToLong(t))
case x: NumericType =>
b => x.numeric.asInstanceOf[Numeric[Any]].toLong(b)
}
1
2
3
4
5
6
7
8
// TimestampConverter
private[this] def castToTimestamp(from: DataType): Any => Any = from match {
...
case DateType =>
buildCast[Int](_, d => DateTimeUtils.daysToMillis(d, timeZone) * 1000)
// TimestampWritable.decimalToTimestamp
...
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/**
* Given a timestamp, which corresponds to a certain time of day in the given timezone, returns
* another timestamp that corresponds to the same time of day in UTC.
* @group datetime_funcs
* @since 1.5.0
*/
def to_utc_timestamp(ts: Column, tz: String): Column = withExpr {
ToUTCTimestamp(ts.expr, Literal(tz))
}

/**
* Given a timestamp, which corresponds to a certain time of day in UTC, returns another timestamp
* that corresponds to the same time of day in the given timezone.
* @group datetime_funcs
* @since 1.5.0
*/
def from_utc_timestamp(ts: Column, tz: String): Column = withExpr {
FromUTCTimestamp(ts.expr, Literal(tz))
}

Deep dive

配置源码解读:

1
val SESSION_LOCAL_TIMEZONE = buildConf("spark.sql.session.timeZone").stringConf.createWithDefaultFunction(() => TimeZone.getDefault.getID)

def sessionLocalTimeZone: String = getConf(SQLConf.SESSION_LOCAL_TIMEZONE)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/**
* Replace [[TimeZoneAwareExpression]] without timezone id by its copy with session local
* time zone.
*/
case class ResolveTimeZone(conf: SQLConf) extends Rule[LogicalPlan] {
private val transformTimeZoneExprs: PartialFunction[Expression, Expression] = {
case e: TimeZoneAwareExpression if e.timeZoneId.isEmpty =>
e.withTimeZone(conf.sessionLocalTimeZone)
// Casts could be added in the subquery plan through the rule TypeCoercion while coercing
// the types between the value expression and list query expression of IN expression.
// We need to subject the subquery plan through ResolveTimeZone again to setup timezone
// information for time zone aware expressions.
case e: ListQuery => e.withNewPlan(apply(e.plan))
}

override def apply(plan: LogicalPlan): LogicalPlan =
plan.transformAllExpressions(transformTimeZoneExprs)

def resolveTimeZones(e: Expression): Expression = e.transform(transformTimeZoneExprs)
}

/**
* Mix-in trait for constructing valid [[Cast]] expressions.
*/
trait CastSupport {
/**
* Configuration used to create a valid cast expression.
*/
def conf: SQLConf

/**
* Create a Cast expression with the session local time zone.
*/
def cast(child: Expression, dataType: DataType): Cast = {
Cast(child, dataType, Option(conf.sessionLocalTimeZone))
}
}

org.apache.spark.sql.catalyst.analysis.Analyzer#batches 可以看到有ResolveTimeZone

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
lazy val batches: Seq[Batch] = Seq(

Batch("Resolution", fixedPoint,
ResolveTableValuedFunctions ::
ResolveRelations ::
ResolveReferences ::
...
ResolveTimeZone(conf) ::
ResolvedUuidExpressions ::
TypeCoercion.typeCoercionRules(conf) ++
extendedResolutionRules : _*),
Batch("Post-Hoc Resolution", Once, postHocResolutionRules: _*),
Batch("View", Once,
AliasViewChild(conf)),
Batch("Nondeterministic", Once,
PullOutNondeterministic),
Batch("UDF", Once,
HandleNullInputsForUDF),
Batch("FixNullability", Once,
FixNullability),
Batch("Subquery", Once,
UpdateOuterReferences),
Batch("Cleanup", fixedPoint,
CleanupAliases)
)

Test Example

对于时区理解

在不同的时区下 sql.Timestamp 对象的表现:

这里是 GMT+8:

1
2
3
Timestamp "2014-06-24 07:22:15.0"
- fastTime = 1403565735000
- "2014-06-24T07:22:15.000+0700"

如果是 GMT+7, 会显示如下,可以看到是同一个毫秒数

1
2
3
Timestamp "2014-06-24 06:22:15.0"
- fastTime = 1403565735000
- "2014-06-24T06:22:15.000+0700"
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
test("ColumnBatch") {
val schema = StructType(
Array(
StructField("id", IntegerType, nullable = true),
StructField("birth", DateType, nullable = true),
StructField("time", TimestampType, nullable = true)
))

val columnarBatch = ColumnarBatch.allocate(schema, MemoryMode.ON_HEAP, 1024)
val c0 = columnarBatch.column(0)
val c1 = columnarBatch.column(1)
val c2 = columnarBatch.column(2)

c0.putInt(0, 0)
// 1355241600, /3600/24 s to days
c1.putInt(0, 1355241600 / 3600 / 24)
// microsecond
c2.putLong(0, 1355285532000000L)

val internal0 = columnarBatch.getRow(0)

//a way converting internal row to unsafe row.
//val convert = UnsafeProjection.create(schema)
//val internal = convert.apply(internal0)

val enc = RowEncoder.apply(schema).resolveAndBind()
val row = enc.fromRow(internal0)
val df = spark.createDataFrame(Lists.newArrayList(row), schema)

TimeZone.setDefault(TimeZone.getTimeZone("UTC"))
val tsStr0 = df.select(col("time")).head().getTimestamp(0).toString
val ts0 = df.select(col("time").cast(LongType)).head().getLong(0)

TimeZone.setDefault(TimeZone.getTimeZone("GMT+8"))
val tsStr1 = df.select(col("time")).head().getTimestamp(0).toString
val ts1 = df.select(col("time").cast(LongType)).head().getLong(0)

assert(true, "2012-12-12 04:12:12.0".equals(tsStr0))
assert(true, "2012-12-12 12:12:12.0".equals(tsStr1))
// to long 之后毫秒数都是一样的
assert(true, ts0 == ts1)
}

番外 : ImplicitCastInputTypes

我们自己定义了一个Expr, 要求接受两个 input 为 DateType 的参数.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
case class MockExpr(d0: Expression, d1: Expression)
extends BinaryExpression with ImplicitCastInputTypes {

override def left: Expression = d0

override def right: Expression = d1

override def inputTypes: Seq[AbstractDataType] = Seq(DateType, DateType)

override def dataType: DataType = IntegerType

override def nullSafeEval(date0: Any, date1: Any): Any = {
...
}
}

假设我们有如下调用, 请问这个调用符合预期吗? 结论是符合的, 因为有ImplicitCastInputTypes.

1
2
3
lit("2012-11-12 12:12:12.0").cast(TimestampType)
lit("2012-12-12 12:12:12.0").cast(TimestampType)
Column(MockExpr(tsc1.expr, tsc2.expr))

org.apache.spark.sql.catalyst.analysis.TypeCoercion.ImplicitTypeCasts

1
2
3
4
5
6
7
8
9
10
11
12
case e: ImplicitCastInputTypes if e.inputTypes.nonEmpty =>
val children: Seq[Expression] = e.children.zip(e.inputTypes).map { case (in, expected) =>
// If we cannot do the implicit cast, just use the original input.
implicitCast(in, expected).getOrElse(in)
}
e.withNewChildren(children)

def implicitCast(e: Expression, expectedType: AbstractDataType): Option[Expression] = {
implicitCast(e.dataType, expectedType).map { dt =>
if (dt == e.dataType) e else Cast(e, dt)
}
}

org.apache.spark.sql.catalyst.expressions.Cast#castToDate #DateConverter

1
2
3
4
5
6
7
8
private[this] def castToDate(from: DataType): Any => Any = from match {
case StringType =>
buildCast[UTF8String](_, s => DateTimeUtils.stringToDate(s).orNull)
case TimestampType =>
// throw valid precision more than seconds, according to Hive.
// Timestamp.nanos is in 0 to 999,999,999, no more than a second.
buildCast[Long](_, t => DateTimeUtils.millisToDays(t / 1000L, timeZone))
}